1. Моя Слобода
  2. Новости
  3. Архив
  4. Болезнь легионеров цветёт на бездорожье - Архив Тульских новостей - MySlo.ru
Болезнь легионеров цветёт на бездорожье

Болезнь легионеров цветёт на бездорожье

Возбудительница болезни легионеров для размножения выбирает, казалось бы, самое неподходящее место

Возбудительница болезни легионеров для размножения выбирает, казалось бы, самое неподходящее место – фагоциты, задача которых как раз поедать бактерии. Оказывается, легионелла разрушает внутриклеточные «дорожки», по которым движутся пищеварительные пузырьки фагоцитов, и добраться до неё они оказываются не в состоянии.


В определенном смысле все живые организмы – ужасные собственники, старающиеся любой ценой распространить как можно больше своих генов и при этом «защититься» от чужого биологического материала с помощью иммунной системы. Зачатки такого подхода появляются уже у доядерных, или прокариот, – бактерии целенаправленно синтезируют ферменты для защиты от вирусов. У первых ядерных клеток, или эукариот, подобные механизмы обладали более широким спектром действия, уничтожая уже без разбору и вирусы, и бактерии.


Постепенно иммунитет совершенствовался: появились отдельные специализированные клетки, сложные сигнальные каскады, разнообразные способы уничтожения потенциальных «врагов» и даже эффект памяти. Но даже химическая и фармацевтическая промышленность не смогла окончательно искоренить микроскопическую угрозу:

За прошедшие миллионы лет эволюция бактерий тоже не стояла на месте, и они научились укрываться от защитных реакций организма-хозяина самым разнообразным образом.

Например, Legionella pneumophila или Coxiella burnetii позволяют клеткам-фагоцитам съесть себя целиком, после чего начинают размножаться прямо внутри клеток иммунной системы. Крэг Рой и его коллеги из Медицинской школы Йельского университета выяснили, как именно этим прокариотам удаётся обмануть наш иммунитет. Их работа опубликована в последнем выпуске Science.

Фагоцитоз, за который Илья Ильич Мечников вместе с Паулем Эрлихом получил Нобелевскую премию сто лет назад, не требует нескольких стадий распознавания, активации и прочей продолжительной подготовки. Клетки-фагоциты определяют бактерию по характерным молекулам, входящим в состав стенки последней, и не свойственным для эукариот. После чего они целиком поглощают бактерию. Прокариота оказывается «заточённой» в клетке в отдельном пузырьке, окружённом мембраной. Через некоторое время с ним сливается другой пузырёк, несущий пищеварительные ферменты, которые «съедят» бактерию заживо.

Но вот в случае с легионеллами этого не происходит. Рой и его коллеги доказали, что бактерия умудряется ещё на стадии поглощения «вбросить» в цитоплазму клетки-хозяина целое семейство белков-анкиринов (Ank), мешающих нормальному движению пузырьков.

Как выяснили учёные, это происходит с помощью типа секреции, позволяющей ввести бактериальные белки непосредственно в цитоплазму клетки хозяина. Эти белки препятствуют сборке и перестройке микротрубочек – тонких нитей, пронизывающих всё внутриклеточное пространство и обеспечивающих движение отдельных органелл внутри клетки.


Флуоресцентная микрофотография микротрубочек живой клетки, помеченных зеленым
флуоресциирующим белком и Legionella pneumophila, продуцирующих красный
флуоресцирующий белок. // AAAS/Science


В результате у легионеллы остается время, чтобы выбраться из заточения, а уже внутри клетки ей ничего не угрожает – как защищаться от действия бактерий изнутри, эукариоты ещё не придумали. Не удивительно, что смертность от легионеллёза без лечения достигает 20%.


Специальное молекулярное "сцепление", способное выключать передачу движения
с биомотора на жкутик бактерии, в движении и в покое // Zina Deretsky, NSF/"Газета.Ru"


Легионелла – не единственная бактерия, удостоенная внимания микробиологов. Ричард Улевич из Исследовательского института имени Скриппс в калифорнийской Ла-Холле и его соавторы в другой работе , опубликованной в том же номере Science, обнаружили альтернативный механизм у другого, не менее опасного возбудителя – синегнойной палочки Pseudomonas aeruginosa, вызывающей до 17% всех больничных пневмоний.

Сравнив реакций со стороны клеток-макрофагов на эту палочку и на другие бактерии — Salmonella typhimurium и Staphylococcus aureus, учёные обнаружили у псевдомонады существенное преимущество.

Образуемое ею вещество N-(3-оксо-додеканоил)гомосеринлактон, названное также С12, разобщает сигнальный цикл внутри клеток иммунной системы, необходимый для обеспечения координированной «атаки» разных типов клеток на возбудителя.

И хотя отдельные псевдомонады успешно уничтожаются макрофагами, бактерии легко идут на эту жертву, формируя очаг хронической инфекции. Так что это как раз те случаи, когда антибиотики, к которым, кстати, все описанные виды малочувствительны, — единственный способ справиться с инфекцией.

Кстати, разработки принципиально новых видов лечения на основании обнаруженных феноменов ждать не стоит. Как показывает даже 50-летний опыт антибиотикотерапии, бактерии за миллиарды лет научились перестраиваться гораздо быстрее человека.

СПРАВКА

Фагоцитоз

представляет собой важную особенность клеточного звена врождённого иммунитета, которую осуществляют клетки, называемые фагоцитами, которые «заглатывают» чужеродные микроорганизмы или частицы. Фагоциты обычно циркулируют по организму в поисках чужеродных материалов, но могут быть призваны в определенное место при помощи цитокинов. После поглощения чужеродного микроорганизма фагоцитом он оказывается в ловушке внутриклеточного пузырька, который называется фагосомой. Фагосома сливается с другим пузырьком — лизосомой, в результате чего формируется фаголизосома. Микроорганизм погибает под воздействием пищеварительных ферментов, либо в результате дыхательного взрыва, при котором в фаголизосому высвобождаются свободные радикалы.

Фагоцитоз эволюционировал из способа получения захвата питательных веществ, но эта роль у фагоцитов была расширена, став защитным механизмом, направленным на разрушение патогенных возбудителей. Фагоцитоз, вероятно, представляет собой наиболее старую форму защиты макроорганизма, поскольку фагоциты обнаруживаются как у позвоночных, так и у беспозвоночных животных.

К фагоцитам относятся такие клетки, как мононуклеарные фагоциты (в частности — моноциты и макрофаги), дендритные клетки и нейтрофилы. Фагоциты способны связывать микроорганизмы и антигены на своей поверхности, а затем поглощать и уничтожать их. Эта функция основана на простых механизмах распознавания, позволяющих связывать самые разнообразные микробные продукты, и относится к проявлениям врождённого иммунитета. С появлением специфического иммунного ответа мононуклеарные фагоциты играют важную роль в его механизмах путём представления антигенов T-лимфоцитам. Для эффективного уничтожения микробов фагоцитам требуется активация.

Нейтрофилы и макрофаги представляют собой фагоциты, которые путешествуют по организму в поисках проникших сквозь первичные барьеры чужеродных микроорганизмов. Нейтрофилы обычно обнаруживаются в крови и представляют собой наиболее многочисленную группу фагоцитов, обычно представляющую около 50%-60% общего количества циркулирующих лейкоцитов. Во время острой фазы воспаления, в частности, в результате бактериальной инфекции, нейтрофилы мигрируют к очагу воспаления. Этот процесс называется хемотаксисом. Они обычно являются первыми клетками, реагирующими на очаг инфекции. Макрофаги представляют собой клетки многоцелевого назначения, обитающие в тканях и производящие широкий спектр биохимических факторов, включая ферменты, белки системы комплемента и регуляторные факторы. Кроме того, макрофаги выполняют роль уборщиков, избавляя организм от «изношенных» клеток и другого мусора, а также роль антиген-презентирующих клеток, активирующих звенья приобретённого иммунитета.

Дендритные клетки представляют собой фагоциты в тканях, которые соприкасаются с внешней средой, то есть расположены они, главным образом, в коже, носу, лёгких, желудке и кишечнике. Они названы так, поскольку напоминают дендриты нейронов наличием многочисленных отростков, однако дендритные клетки никоим образом не связаны с нервной системой. Дендритные клетки служат связующим звеном между врождённым и приобретённым иммунитетом, поскольку они представляют антиген T-клеткам, одному из ключевых типов клеток приобретённого иммунитета.

Бактериальное сцепление

Биологи из Гарварда и университета Индианы нашли общую черту автомобилей и бактерий: и у тех, и у других есть сцепление - устройство, которое может отключать и подключать двигатель от приводящих их в движение частей. Открытие, о котором учёные сообщают в опубликованной в журнале Science статье, может дать исследователем в сфере нанотехнологий идеи, как управлять нанодвигателями их собственного производства.

Биолог Крис Блэр и его коллеги идентифицировали белок, который работает как сцепление для «мотора», приводящего в движение жгутик бактерии: похожая на хвост структура позволяет многим микроорганизмам двигаться в жидкой среде. «Сцепление» выключает вращение жгутика, останавливая бактерии, когда они собираются в так называемые биопленки - гигантские колонии бактерий, которые могут образовываться почти на любой поверхности - от зубов до водопроводных труб, и играют важнейшую роль в распространении многих инфекционных заболеваний.

Ученые уже давно знали, что заставляет жгутики бактерий вращаться, но что их останавливает - временно или на долгий срок - было неизвестно.

«Мы думаем, что это невероятно круто, что бактерии в процессе эволюции и человеческие инженеры пришли к схожему решению», - говорит руководитель исследовательского проекта Дэниэл Кирнс из Индианы.

Маленький, но мощный двигатель, который позволяет бактерии Bacillus subtilis двигаться сквозь жидкость, может быть отключен от штопорообразного жгутика с помощью белковой молекулы-сцепления. Действие белка EpsE, который обнаружили исследователи, очень похоже на принцип работы автомобильного сцепления. В автомобиле сцепление контролирует, соединен ли двигатель с частями, которые вращают колеса. Когда двигатель и колеса отсоединены друг от друга, машина может продолжать двигаться, но только по инерции.

Молекула EpsE «садится», по словам Кирнса, на ротор жгутика - кольцевую структуру в его основании. Взаимодействие EpsE с белковой молекулой-ротором, которая называется FliG, меняет ее форму, что приводит к отключению жгутика от «мотора», который работает благодаря перемещению протонов.

Открытие белка EpsE и его функций произошло случайно. Кирнс и его коллеги пытались узнать больше о генах, которые заставляют отдельную клетку Bacillus subtilis прекратить одиночное путешествие и присоединиться к гигантской бактериальной коммуне - биопленке. Стабильность таких пленок может быть нарушена «гиперактивными» бактериями, которые продолжают двигать жгутиками.

«Мы пытались выяснить, как соотносятся способность бактерий двигаться и процесс формирования биопленок. Мы искали гены, которые определяют - двигаться клетке или оставаться в покое. Хотя Bacillus subtilis безвредна, биопленки часто содержат инфекционные и патогенные микроорганизмы. Понимание процесса формирования биопленок может оказаться полезным в борьбе с бактериальными инфекциями», - говорит Кирнс.

Когда ученые обнаружили, что молекулы EpsE участвуют в прекращении движения жгутика, они предложили два возможных объяснения механизма их работы. Первый предполагал, что EpsE работает как тормоз, зажимающий движущуюся деталь. Другой - что EpsE может функционировать, как сцепление, отключающее одну движущуюся часть от другой. Во втором случае жгутик может продолжать двигаться, но исключительно под внешним воздействием.

Чтобы определить, какая из гипотез правильна, ученые решили позволить «хвосту вилять собакой». Они присоединили концы жгутиков бактерий к предметному стеклу и изучили движение всей клетки в отсутствие и в присутствии EpsE. В отсутствие белка EpsE клетка вращалась пять секунд, а при наличии этого белка клетка останавливалась, но могла вращаться пассивно, за счет возмущений в жидкости, вызванных броуновским движением. Если бы EpsE работал как тормоз, клетка не смогла бы вращаться совсем.

Исследователи также выяснили, что, когда клетка начинает производить белок EpsE, требуется около 15 минут, прежде чем механизм вращения жгутика отключится. Жгутики приводятся в движение самым маленьким, но очень мощным природным мотором - например, у Bacillus subtilis жгутик вращается с частотой более 200 раз в секунду.

Источник



Главные новости за день в нашем паблике ВКонтакте

Перейти во ВКонтакте

25 июня 2008, в 11:22
Другие статьи по темам

Главные новости за день в нашей имейл-рассылке

Спасибо, вы успешно оформили подписку.
Произошла ошибка, попробуйте подписаться чуть позже.

Только главные новости!

Получай уведомления от Myslo.ru о самых важных событиях.