ВТБ применил машинное обучение при кредитовании застройщиков в 30 городах
Это позволяет оперативно принимать решения о выдаче банком кредитов под строительство.
17:28, 28 июля 2022
ВТБ завершил пилотный проект по использованию инструментов машинного обучения. Технология поможет банку эффективнее оценивать стоимость строящихся объектов и в ускоренном режиме принимать решения по выдаче кредитов на жилищное строительство. Новый сервис протестирован в 30 городах России.
В основе сервиса — универсальная платформа геоаналитики, запущенная ВТБ в 2020 году и позволяющая сопоставлять 170 слоев обезличенных данных из банковской сферы, телекома и digital-сервисов. В решении используется обезличенная информация о жителях аналогичных домов, а также районов со схожей транспортной инфраструктурой, имеющих похожие интересы, структуру доходов и расходов и т.д. Уникальный периметр данных анализируется методами машинного обучения для построения сложных нелинейных моделей оценки стоимости объектов. Все это позволяет оперативно принимать решения о выдаче банком кредитов под строительство.
При стандартном методе аналитики для принятия решения в ручном режиме сравнивают территориально близкие объекты. Модели, основанные на Big Data, позволяют оперативно получать качественную аналитику на базе гораздо большего объема разнообразной информации. Наиболее значимые конкурентные преимущества сервис дает в ситуации, когда строящийся жилой объект не имеет рядом аналогов, и оценить его, используя только метод сравнения с похожими соседствующими объектами, невозможно.
- При разработке сервиса мы столкнулись с тем, что рынок жилой недвижимости имеет очень динамичный характер. Для того, чтобы «успеть» за рынком в таком широком географическом периметре, мы разработали не просто модели машинного обучения, а Geo AutoML сервис. Он позволяет перестраивать модели в полностью автоматическом режиме. На сегодняшний день AutoML-решений на рынке много, но это первая история с применением геоаналитики. Поэтому сервис можно считать уникальным, — комментирует Максим Коновалихин, руководитель департамента анализа данных и моделирования – старший вице-президент ВТБ.
Руслан Еременко, руководитель департамента регионального корпоративного бизнеса – старший вице-президент ВТБ, отметил:
- Оценка рыночной стоимости строящейся недвижимости играет для банка важную роль в принятии решения о финансировании. Новая разработка позволяет нам повысить оперативность на этом этапе работы с проектом и получить более объективные и точные данные. Мы видим позитивные результаты с точки зрения повышения эффективности оценки проектов в рамках пилотирования сервиса и планируем до конца сентября масштабировать его на большинство крупнейших городов страны.
Пока решение применяется только внутри банка, но в дальнейшем может стать доступным и сторонним пользователям — другим банкам и застройщикам жилой недвижимости.
14:00, 17 декабря 2024 59
18:10, 14 декабря 2024 23
17:29, 14 декабря 2024 168
09:27, 16 декабря 2024 65
18:17, 18 декабря 2024 144
09:00, 14 декабря 2024 242
18:12, 14 декабря 2024 138
13:10, 15 декабря 2024 139
19:14, 15 декабря 2024 10
16:32, 19 декабря 2024 154
11:50, 19 декабря 2024 1
14:25, 20 декабря 2024 93
18:06, 15 декабря 2024 170
12:46, 19 декабря 2024 1
15:53, 16 декабря 2024 11