Ученые ТулГУ учат нейросеть управлять БПЛА
Задача с каждым годом становится все более актуальной для различных областей производства.
18:43, 7 августа 2024
Ученые ТулГУ разрабатывают новые методы цифрового управления сложными динамическими объектами. В их основе лежит использование искусственных нейронных сетей, что позволяет работать с нелинейными, нестационарными объектами управления, отличающимися наличием конструктивных ограничителей и в силу этого сложным поведением.
В настоящее время для линейных систем управления уже предложены точные математические модели и методы синтеза регуляторов, в то время как для нелинейных поиски методов продолжаются. Задача с каждым годом становится все более актуальной для различных областей производства, включая робототехнику (манипуляторы), авиацию (управление полётом воздушных судов), автомобильную промышленность (динамическое управление транспортными средствами), химические процессы (кинетика реакций).
Ученые лаборатории цифровых систем управления сложными динамическими объектами одним из способов решения проблемы предлагают метод синтеза нейрорегулятора, гарантирующего устойчивость замкнутого контура, который может применяться для объектов с наиболее часто встречающимися на практике нелинейностями. На основе сформированного банка опытных данных проходит процесс обучения нейросети с заранее заданной структурой. В результате появляется возможность с помощью искусственного интеллекта калибровать системы управления даже в случаях изменения базовых параметров функционирования нелинейных объектов, что очень важно для безопасной работы промышленного оборудования, роботов и беспилотных летательных аппаратов.
Предлагаемая методика позволяет ускорить и упростить синтез нейросетевых регуляторов, повышающих качество управления сложными динамическими объектами, с учетом ограниченных вычислительных ресурсов бортовых систем.
— Регуляторы, основанные на искусственных нейронных сетях, могут быть эффективно применены в случае, когда отсутствует адекватная верифицированная и достаточно точная математическая модель объекта управления, но есть возможность получить экспериментальные данные. Достоинством таких регуляторов является их способность к обучению и адаптации под объект на основе полученных данных, — пояснил старший научный сотрудник лаборатории цифровых систем управления сложными динамическими объектами и один из разработчиков метода Дмитрий Леонидович Хапкин.
Исследование было проведено в рамках работы гранта Российского научного фонда № 23-29-00609, https://rscf.ru/project/23-29-00609/ и проекта Минобрнауки России «Передовые инженерные школы».
Результаты исследования опубликованы в журнале «Мехатроника, автоматизация, управление», включенном в базу данных Scopus (https://doi.org/10.17587/mau.25.345-353).
18:20, 1 ноября 2024 14
15:17, 31 октября 2024 22
12:02, 31 октября 2024 23
15:06, 30 октября 2024 160
13:00, 29 октября 2024 47
12:32, 29 октября 2024 30
22:13, 1 ноября 2024 125
17:24, 31 октября 2024 15
21:30, 30 октября 2024 202
20:15, 29 октября 2024 12
07:40, 1 ноября 2024 128
12:30, 31 октября 2024 179
11:54, 30 октября 2024 81
20:04, 2 ноября 2024 33
10:07, 30 октября 2024 88